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CALCULATION OF AXISYMME TRIC SUPERSONIC FLOW PAST
BLUNT BODIES WITH SONIC CORNERS, INCLUDING
A PROGRAM DESCRIPTION AND LISTING

By Jerry C. South, Jr.
Langley Research Center

SUMMARY

A program for the approximate calculation of supersonic flow of an ideal gas past
blunt bodies with sonic corners is described. Numerical solutions are obtained for the
system of differential equations derived from the one-strip integral (Belotserkovskii)
method. Aerodynamic results of interest include the surface pressure and velocity dis-
tributions, the shape and location of the detached bow shock wave, and the forebody pres-
sure drag coefficient. Comparison of the calculations with experimental data is given,
with particular emphasis on spherically blunted cones of large apex angle. For this con-
figuration, a simple method is suggested for estimating angle-of-attack pressure distri-
butions. Other shapes included are a circular disk and a spherical cap convex or concave
to the stream. The program operation and listing in FORTRAN IV language are given in
the appendixes.

INTRODUCTION

The use of aerodynamic means for deceleration of a body entering a rarified plane-
tary atmosphere such as that of Mars brings high-drag configurations into consideration.
In this regard, a blunt body with subsonic flow over most of its '"face'' is suggested;
shapes such as a disk, spherical cap (concave or convex to the stream), and blunted cone
with large apex angle thus assume practical importance. Under appropriate conditions,
these particular shapes have a common feature: the transition from subsonic to super-
sonic flow occurs in a singular manner at the sharp, convex corner which terminates the
"face.'" Newtonian aerodynamic analyses do not account for the rapid pressure drop near
the sonic corner, so other approximate methods are sought. 'Inverse' methods, where
the shape of the bow shock wave is given and the body shape is solved for (refs. 1 to 3),
are avoided since they can produce only analytic body shapes, whereas the shapes already
mentioned have a singularity (corner). Among the "direct" methods (body shape given),
one which is particularly adaptable to this problem is the method of integral relations,
often called Belotserkovskii's method (refs. 4 to 7). In references 6 and 7, this scheme




was specially developed for use in the first (one-strip) approximation with application to

blunt bodies with sonic corners.

Since there is presently a need for more information concerning the nonanalytic,
high-drag shapes, this paper presents further results following the method of refer-
ences 6 and 7, with primary emphasis on spherically blunted cones. The computational
program is restricted to an ideal gas (constant specific~-heat ratio) and to the singular
sonic-point transition; this latter restriction is primarily a geometrical one. A rough,
but general, requirement for the occurrence of the singular sonic transition at the corner
is that the surface inclination should be everywhere greater than that at the regular sonic
point of a full hemisphere. For example, the corner of the convex spherical cap or the
junction of the sphere-cone must lie upstream from the usual sonic-point location for the
full hemisphere. For any general convex shape with a corner, there is obviously a criti-
cal combination of free-stream conditions and minimum surface angle where a smooth-
transition sonic point will occur somewhere ahead of the corner. Difficulties are thus
encountered when conditions are very near the critical combination, as will be discussed

later,
Details of the program symbols, operation, and listing in FORTRAN IV language
are given in appendixes A to C.

SYMBOLS

Flow variables are nondimensionalized as follows: pressure by poosz, density
by p_,and velocity by V.

a local speed of sound

¢p drag coefficient

D maximum body diameter

K body surface curvature, -dg/ds

M Mach number, V/a

p pressure

Prmax stagnation pressure behind normal shock wave

Ry base radius



Ry nose radius

s,n curvilinear coordinates along and normal to body surface (fig. 1)
St value of s at sphere-cone junction

X,r cylindrical coordinates (fig. 1)

u,v velocity component in s and n direction, respectively

A% total speed, \/u2 + v2

a angle of attack

B shock angle (fig. 1)

v ratio of specific heats

o shock-layer thickness along n-coordinate (fig. 1)

® stagnation streamline isentrope constant, pl(O)/lle(O) 14
A=8-0

9 surface inclination angle (fig. 1)

B¢ cone apex half-angle

fc,det apex half-angle of pointed cone at shock detachment

9c,son apex half-angle of pointed cone with sonic surface speed

n fraction of sonic speed for lower bound of surface velocity extrapolation

bracket (eq. (7a))
P density

T combined entropy-continuity flow variable, (p/, ptI>)1/ (r-1)



Subscripts:

0 quantity along surface (n = 0)
1 quantity along shock wave (n = 8)
% free-stream conditions
Superscript:
* conditions where Mg =1
METHOD

Although the basic features of application of the integral method to blunt bodies with
sonic corners have been reported before (refs. 6 and 7), there are certain minor varia-
" tions in procedure which can lead to differences in the numerical results (ref. 8). For
the sake of completeness, then, a brief outline is given here,

After the governing partial differential equations (in conservation form as presented
in ref. 5) are integrated across the shock layer by approximating certain integrands as
linear in n/8, three ordinary differential equations are obtained, as follows:
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A sketch of the geometry and coordinates is shown in figure 1. A particular body con-
tour is specified by giving the surface angle and curvature, 6 and K, as functions of s.
The functions at the shock wave are explicit functions of y, My, B, and 6. The main
dependent variables are 6, f, and ug, while Py and py are obtained as explicit
functions of ¥, My, and ug by using the isentropic law.

The following notes are offered concerning the derivation of equations (1) to (3):

1. The body-oriented, curvilinear coordinates s,n were used because of their
adaptability to a large class of smooth contours (continuous slope up to the sonic corner)
and, in particular, to the approach to the singular sonic corner.

2. The "entropy-continuity" formulation, so-called by Xerikos and Anderson (ref. 8),
was used instead of the alternate "pure-continuity' formulation because the former gives
somewhat better results than the latter in the first approximation.

3. When integrands such as the function Tur were approximated by linear inter-
polation in n/& between the values at the shock wave and surface, the entire function,
including the geometric variable r, was assumed linear in n/é.

Boundary Conditions and Solution Procedure

At the symmetry axis, s =0, the body surface is normal to the stream (6(0) = 7/2),
and the following symmetry conditions hold:

B(0) = /2 (4)
ug(0) =0 (5)
At the corner of the body, the surface speed is required to reach sonic value,
up(s*) = a* (6)
where a* is the critical speed, a constant which depends on y and M. The integra-
tion of equations (1) to (3) starts at s =0 and terminates at s = s*; the initial shock-

wave standoff distance 6&(0) is unknown and must be chosen so that equation (6) is satis~
fied at the correct corner location.

Singularity at the corner.- Inspection of equation (3) shows that the velocity gradi-
ent will become infinite at s = s*, since at that point the factor 1 - MO2 vanishes in the

denominator, while the numerator does not vanish in general (with exceptions as noted
later). In fact, as observed in reference 6, the system of equations (1) to (3) behaves
such that the surface speed has a half-power type of singularity in a neighborhood of s*



1/2 )

a* - ug ~ const.(s* - s)

while B and & are smooth (continuous s-derivative) functions at s*. An extrapola-
tion procedure incorporating this feature is used in the numerical calculations when the

velocity reaches a value

na* = ug = 0,999a* (7a)

(A value of 1 which appears to give consistent results is n = 0.95.)

Determination of 6(0).- As mentioned before, the initial value of the shock-wave
standoff distance 6(0) is unknown and must be chosen so that the singular sonic point
occurs at the known location of the corner. Between successively improved upper and
lower bounds, a halving-mode iteration procedure for determining the correct value of
8(0) is easily automated; for if &(0) is too large or too small (within certain limits),
the sonic singularity occurs downstream or upstream from the corner, respectively.

This behavior is not guaranteed when the desired integral curve lies near the saddle point
of the system of equations (1) to (3), mentioned in the next paragraph. Values of &(0)
which are too large can yield solutions of the other family which have a behavior totally
different from that indicated by equation (7) (the numerator of eq. (3) passes through zero
before sonic speed is reached). However, such occurrences are easily accounted for in
an automatic program. (See also the section entitled ""Limitations of Program" for a dis-

cussion of sensitivity near the saddle point.)

It should be pointed out that the solution of the blunt-body problem by the one-~strip
integral approximation is technically easier for the singular sonic-point condition than for
the regular sonic-point condition associated with smooth shapes without corners. In the
latter case, the sonic point is a saddle point of equations (1) to (3) whose location is not
known a priori (ref. 4); the desired solution is the integral curve which passes through
the saddle point and divides two divergent families of integral curves. The inherent
instability of the saddle-point solution makes its numerical construction difficult, and
great accuracy in the initial value &(0) is required as a rule (ref. 9). On the contrary,
the singular sonic-point solutions are of one family, characterized in behavior by equa-
tion (7); in most cases of practical aerodynamic interest, the desired solution is not too
near the saddle point, and the relation between &(0) and s* is nearly linear. (In fact,
for the circular disk, the relation is exactly linear (ref. 9).) Furthermore, since the
sonic corner lies at the maximum body radius, much of the useful information is complete

without carrying the solution beyond the corner.



Remarks on Higher Approximations

Higher approximations for the present scheme require the introduction of more
strips between the shock wave and body surface. The regular sonic-point condition
applies on each intermediate strip boundary, and thus the saddle points appear with a
corresponding number of unknown initial parameters. Further technical complications
will arise in this scheme if a portion of the subsonic flow, and hence the locus of saddle
points, lies beyond the surface normal drawn from the body corner. In this case, polar
coordinates might be introduced at the singular corner to complete the determination of
the solution, but itis not known if such an approach would be successful or worthwhile.
The difficulties associated with the higher approximations certainly justify attempts at
obtaining as much useful information as possible from the relatively simple one-strip
approximation.

Before these remarks are closed, it should be mentioned that Belotserkovskii has
reported some calculations for spherical caps (ref. 10), wherein he combined the two-
strip approximation of the so-called scheme II of the integral method (polynomial approx-
imation and explicit integration along the body, numerical integration from the shock
wave towards the surface) with Vaglio-Laurin's asymptotic solution for the flow near the
sonic corner (ref. 11).

RESULTS AND DISCUSSION

The program as listed in appendix C has a built-in capability to treat four basic
axisymmetric "truncated' shapes: a disk normal to the stream, a spherical cap convex
or concave to the stream, and a spherically blunted cone. The program can be modified
to include other shapes if desired. (See appendix B.) In this section some typical results
for these shapes are compared with experimental data, followed by selected results of an
exploratory nature for the spherically blunted cone.

Comparison With Experimental Data

An indication of the accuracy and capability of the method can be obtained by com-
parison with experimental data. The experimental data for the blunted and pointed cones
were obtained in the Langley Unitary Plan wind tunnel (UPWT). The pressure data for
both blunted and pointed cones and the shock-wave shapes for the blunted cones were
supplied by Robert L. Stallings, Jr., Lana M. Couch, and Dorothy H. Tudor; the drag
measurements and the shock-wave shapes for the pointed cones were supplied by
James F. Campbell. These data are identified in the figures as UPWT data.

Disk and spherical caps (convex to the stream).- Shown in figure 2 are the calcu-
lated and measured (ref. 12) pressure distributions for a circular disk and two different
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spherical caps (convex to the stream) for M, = 4.63. The calculated pressures are
consistently too low as the sonic corner is approached, but the accuracy is adequate for
engineering design purposes.

Spherical cap concave to the stream.~ In figure 3, the calculated pressures for a
spherical cap concave to the stream are compared with those of reference 13 for
Mo = 4.76. There is some doubt as to the plotting accuracy of the experimental data
since it was replotted from a small-scale figure with a coarse grid (model A in fig. 6 of
ref. 13).

Blunt 60° cone.- The calculated and measured results for the bow shock and pres-
sure distribution for a spherically blunted, 60° half-angle cone are shown in figure 4 for
= 2.96 and 4.63, with a bluntness ratio Rn/Rb = 0.25. Here also the pressures near
the corner are too low by, at most, 3 percent; but again, this accuracy should satisfy
engineering requirements. The predicted shape and location of the bow shock wave is

seen to be excellent.

Pointed cone with detached shock.- For v = 1.4, the bow shock is always detached
at any value of Mo for a 600 half-angle pointed cone. Hence, when 6c = 60° the limit
Rp /Rb - 0 presents no alteration of the important boundary conditions, and it may be
expected that the gross features of the solutions for small values of Rp/Rp approach
the solution for the pointed cone. ! Figures 5 and 6 illustrate this feature, showing the
calculated results for the bow shock and pressure distribution for 6 = 60° and
Rn/Rb = 0.02 compared with experimental data for a pointed 60° cone. It can be seen
that, at least when 0c > ¢ det, the calculations for small bluntness ratios are good
approximations to the experimental results for both the shock shape and pressures.

On the contrary, when 6, = 6, ,det> the limit Rp /Rb - 0 does involve discontinu-
ous alteration of an important boundary condition; that is, a pointed cone (Rn /Rb O) has
an oblique shock wave attached at the vertex, and hence the surface entropy is less than
that corresponding to the detached, normal shock conditions which hold for any finite
blunting (Rn /Rb > 0>. Even for a pointed cone, the passage from an attached oblique
shock to a detached normal shock at ¢ = 6¢ det implies a discontinuous jump in the
surface entropy, and hence a corresponding jump in both the vertex and sonic corner
pressures. In spite of this, it seems that the drag of a pointed, finite cone is a continuous
function of the cone angle while passing through 6¢ = 9c det Busemann (ref. 14) argued

1Some local nonumform behavmr is ant101pated near the stagnation point as
Ry /Rb -~ 0, since the apex of the pointed cone (with detached shock) is a singular point.
The behavior of the flow near the apex is analogous to that of a wedge in incompressible
potential flow, where fluid properties vary like sV, 0<wv<1,and v depends on the
apex angle.



that the drag of a sharp wedge depends continuously on the wedge angle through detach-~
ment, basing his conclusions on Guderley's potential-flow hodograph analysis (ref. 15).
Johnston's (ref. 16) experimental results for both the wedge and cone drag at M = 2.45
appear to be continuous through detachment. His investigation showed that the forebody
pressure drag coefficient for a pointed finite cone coincides with that for the infinite cone
when 6, = f¢,son> departs from the infinite-cone value for 6¢ > 6¢ gopn, 2nd increases
monotonically and continuously through detachment up to 8¢ = 90°. This offers a heu-
ristic picture, then, of the dependence of Cp on 8¢ for a pointed finite cone. It
remains to consider the effects of small, but finite, bluntness.

A rigorous discussion of the interaction between small blunting and the transonic
singularities that arise in the pointed case for f¢,son < Oc < ¢ det (ref. 15) is beyond
the scope of the present report and certainly beyond the means of the coarse one-strip
integral method. It seems natural to suppose, however, that the bluntness effects will be
contained in an entropy layer whose thickness depends on Rn/ Rp and that in the range
f¢c,son < Oc < f¢ det the drag coefficient for sufficiently small bluntness will be slightly
smaller than that for a pointed cone. The expected difference should be caused by the
lower pressure level near the sonic corner of the blunted cone, but the difference in drag
should tend to zero as Rn/Rb —~ 0 and the bluntness-entropy effects vanish.

The one-strip integral method does not account for vanishingly thin entropy layers;
it "weights' the surface entropy condition more or less equally with the shock conditions.
Thus as Rn/Rb — 0, spurious entropy effects remain. Evidence of this can be seen in
figure 7, a plot of Cp against ¢, for a finite cone. The experimental data (Campbell,
UPWT) were obtained for pointed cones by force measurement and subtraction of the
estimated base drag. (The Cp values for 6; =500 were obtained in an earlier test,
and were judged to be relatively higher than the others due to a different base drag cor-
rection.) The curve corresponding to the infinite-cone solution {showing both the "strong"
and "weak'' shock branches) was obtained by calculation from the approximate algebraic
equations derived from the one-strip integral method by setting the right-hand sides of
equations (2) and (3) equal to zero (ref. 17). The calculated curve for the finite '"pointed"
cone solution is actually for Rn/Rb = 0.1. It was found that essentially the same curve
is obtained for all values of Rn/Rb from 0.01 to 0.5. (See the next section and fig. 8
concerning the effect of bluntness on drag.) It is clear that the present calculations do
not approach the curve for the infinite cone at 6, = 6¢,son- The gap between the two
solutions widens as M., increases, which is in accordance with the increasing difference
in the attached~ and detached-shock entropy levels at the surface.



Selected Results for the Blunted Cone

Among the shapes considered herein, the spherically blunted cone is by far the
most versatile candidate for the aeroshell design of a planetary probe. Both the blunt-
ness ratio and the cone angle can be varied to achieve a compromise among the require-
ments of convective and radiative heating, drag for deceleration, aerodynamic stability,
volume, and so forth. In this section selected results for the blunted cone are presented
to indicate some effects of the parameters Rp /Rb, 6¢cs, v, and M.

Insensitivity of drag with bluntness ratio R, /Rb.- One unexpected result was that

the drag remains practically constant as the bluntness ratio is changed from a nearly
pointed cone (R /Rp £0.1) to a spherical cap (Bn /Rp = sec 6c). In figure 8 this behavior
is shown for y = 1.4, 6. =60°, and M, = 3, 5, and 10. It is seen that for

0< Rn/Rb < 1.5, the change in drag is not measurable, and the drag of the spherical cap
(Rn /Rb = 2.0) is only 3 percent greater than the pointed-cone drag. On the other hand,
the simple Newtonian approximation for the sphere-cone drag coefficient is

Cp = 2 sin26c + (Rn/Rb>zcos4 fc (8)

which predicts a 17-percent increase in passing from the pointed cone to the spherical
cap (for 8¢ = 60°0). Pressure distributions for several bluntness ratios are shown in
figure 9 for the 60° sphere-cone, and it is seen that the smaller bluntness ratios result

in slightly higher pressures on the outboard conical skirt where the area contribution is
the greatest. This compensating feature is not accounted for in the Newtonian theory;
hence, the approximation of equation (8) éignificantly overestimates the effect of bluntness
on drag for the sphere-cone.

Bluntness effect on shock standoff distance and velocity gradient.- Figures 10 and 11
are presented to show how the bow shock standoff distance 5(0)/Rp and the stagnation-
point velocity gradient dug/ds depend on the bluntness ratio for 6¢ = 60° and
M, = 3, 5, 10, and 1000. Over the entire range of bluntness ratios from the pointed cone
to the spherical cap, 6(0)/Rp is practically a linear function of Rn/Rb. On the con-
trary, the behavior of the velocity gradient is quite nonlinear. As Rp, / Rp - 0, the com-
bination Rpdug /ds approaches a finite positive limit, while Rbduo/ ds becomes infi-
nite, like (Rn /Rb>'1. But even the qualities of the behavior near Rn/ Rp = 0 should be
regarded with suspicion, for, as mentioned earlier, the velocity behaves in a precise
singular manner at the tip of a pointed cone; this is not accounted for in these calculations

with a finite (even though small) nose radius.

It should also be noted, according to reference 18, that the velocity gradient pre-
dicted by the one-strip integral method for a smooth body (without a sonic corner) is
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apparently too large. There is no reason to assume that the present results are more
accurate.

Effect of y on shock shape and pressure distribution.- For a given value of Moco,

the density ratio across the bow shock increases with decreasing v, while the calculated
shock wave moves closer to the body. Since large density ratios and thin shock layers
are characteristic of hypersonic real-gas flows, ideal-gas calculations for low values of
y(y -= 1) are sometimes used to simulate real-gas effects (ref. 1) — at least in regard to
the shock shape and surface pressures. The shock-wave shape and pressure distribution
for Moe =10, 6, = 60°, and Rn/Rb = 0.25 are shown for several values of y in fig-
ures 12 and 13. Values of 3 lower than 1.18 cannot be considered for this combination
of Me, 6¢c,and Rp /Rb, because of the proximity to the condition where the sonic point
of the full hemisphere would occur at the sphere-cone junction. (See section ""Limitations
of Program.') The outstanding feature of these curves is the changing character of the
solution as conditions are approached which are appropriate to attached-shock, fully sup-
ersonic flow for a pointed cone. For Mw = 10 and 6. = 60°, a pointed cone will have
an attached shock and supersonic flow at the surface for < 1,27 (fig. 21). It is signif-
icant that for 3 = 1.27 two inflection points (d8/ds = 0) appear on the shock wave of the
blunted cone beyond the sphere-cone junction (fig. 12). In figure 13 it can be seen that

the pressures have a small relative minimum just ahead of the sphere-cone junction for

v < 1,27, followed by a large recompression beyond the junction. For reference purposes,
the locations of the shock-wave inflection points are indicated on each corresponding pres-
sure curve.

Traugott (ref. 19), among others, has discussed the connection between the appear-
ance of shock-wave inflections and surface-pressure recompressions in flows over
blunted cones. In that study, however, the flow at the surface in the recompression
region was already supersonic, and the outgoing compression characteristics reached the
shock wave (and caused inflections) somewhat downstream. Here the surface flow is
subsonic, and the recompression is sensed at the shock almost immediately. For the
lowest values of v, the solution in the nose region approaches that of a complete, smooth
sphere, and is practically independent of the afterbody size and shape; while the solution
beyond the junction approaches asymptotic (Rn/Rp — 0) conical pressure and shock angle
before the expansion at the sonic corner begins to take effect.

Effect of 6, on shock and pressure distribution.- For fixed values of ¥ and M,

the pointed sonic cone condition can also be attained by decreasing 0,. For y =1.4,
M, = 10, the sonic angle for a pointed cone is 6¢ son = 54.60. Figures 14 and 15 show
that the effects of decreasing 6, for a blunted cone (Rn /Rb = 0.25) are qualitatively the
same as those already discussed in the previous subsection, where y was decreased.

In figure 14, the body shape was drawn for 6 = 510, while only the base corner positions

11



were indicated for the larger angles. (Note in fig. 15 that the sphere-cone junction loca-
tions differ slightly for each value of 6..) Figure 16 shows how the shock standoff dis-
tance decreases with 6¢, and the independence of the nose solution is clearly evident for
fc < bc,son ~ 55°.

Simple pressure estimates for angle of attack.- It was noted that the pressure dis-
tributions for values of 6 larger or smaller than the nominal value, say 6, = 60°,
bear a strong resemblance to the experimental distributions on the windward and leeward
generators of a 60° blunted cone at angle of attack. To investigate the possibilities of
making some quantitative estimates, a 60° blunted cone at 5° angle of attack was con-
sidered. Pressure data (Stallings, Couch, and Tudor, UPWT) for that configuration at
M = 4.63 are shown in figure 17, together with the present results for 6. = 65°
and 55°, approximating the windward and leeward pressure distributions, respectively.

It appears that the levels of the predictions are roughly in accord, but some coordinate
shifting and stretching might help to account for (1) the displaced stagnation point and

(2) the altered distance to the sonic corner. One quick and obvious scheme is to shift
the stagnation point to the most forward point of the nose and cause the sonic corners to
occur at the correct location by a linear transformation. That is, the simulated wind-
ward (6c = 65°) and leeward (6; = 55°) pressure calculations are relocated by correcting

the corresponding s/D values by a term which depends linearly on s. For this
example (60° blunted cone at 5° angle of attack),

D/wind D/gs D |\D/gg \D/g5 Di\s*/g5
S S
- -(£) -0.011 -0.012 <—>
<D>65 s*/65
and
OIS R
D/iee \P/s5 D |\D/g5 \D/gg D|\s*/5g
= £> - 0.001 - 0.018<_S->
<D 55 s*/55

where A is the displacement required to shift the stagnation point to the most forward
nose point (which lies on the spherical portion for « = 3009),
“n

D

w]] o2
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The results with the shifted and stretched coordinates are replotted in figure 18, together
with similar calculations and data for « = 10°. Figure 19 shows the comparison for

My = 2.96. The agreement for the leeward pressure distribution is surprisingly
accurate, while the windward results agree within 5 percent. This approximation may be
particularly useful if it is coupled with some empirical fit for the peripheral pressure
distribution such as the second-degree trigonometric polynomial suggested by Kaattari
(ref. 20). Hence there exists the capability of obtaining, quite cheaply, reasonable esti-
mates for the entire forebody pressure distribution.

LIMITATIONS OF PROGRAM

Smooth Sphere Sonic Point at Junction

The main difficulty in this program is encountered for the sphere-cone shape when
conditions are approached such that the sonic point for a complete, smooth sphere would
occur at the sphere-cone junction.2 The sonic point for the smooth sphere is a saddle
point of the differential equations (1) to (3) (ref. 4), and the diverging integral curves near
the saddle point are extremely sensitive to the value of &(0). For combinations of v,
M, and 6 near this condition, the success or failure of convergence depends on three
factors: (1) the number of figures carried in the calculations (i.e., the "word" length of
the computer), (2) the bluntness ratio Rp/Rp, and (3) the prescribed accuracy criterion e

for placing the sonic singularity <]r0*/Rb - 1| = e) . An example follows.

Figure 20 is an illustration of the sensitivity of the solution on 8(0) near the criti-
cal condition. For 7 =1.4 and Mo = 10 the sonic point for a smooth sphere occurs at
a location where the surface angle @, and hence the critical cone angle 6, is about
49.19. But even for 6; = 529, eight correct figures in 6(0)/R; were required to place
the sonic singularity slightly beyond ro*/Rn =4.0. In other words, if only eight deci-
mal figures were carried in the calculations, bluntness ratios less than about 0.25 could
not be obtained, and those somewhat greater than 0.25 would be possible only for a fairly
lax convergence criterion (say e 2 0.05). For 6 = 51°, Rn/Rb = 0.25, forty-five

2In an exact analysis, the chief concern would be the point of origin of the limiting
characteristic (ref. 1, pp. 202-203), downstream from which changes in the body shape
cannot affect the nose solution. In the one-strip approximation, however, it is the surface
sonic point that is crucial,
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halving-mode iterations (producing about fourteen correct figures3 in &(0)/Ry) were
required for an accuracy criterion € = 1074

In a study of blunted cones of "small" angle (i.e., with sonic point always on the
spherical nose), Traugott (ref. 19) described a range of cone angles in which the integral
method should fail, for a given y and M,. The upper limit is the critical angle just
described; that is, the cone angle 6, for which the sonic point of the complete smooth
sphere would occur at the sphere~cone junction. The lower limit is the cone angle for
which the asymptotic, pointed-cone pressure is equal to the sonic pressure obtained by
isentropic expansion from the normal shock conditions. The cone angles in between con-
stitute what Traugott called the ''second sonic point' region; wherein the flow along the
surface will become supersonic on the spherical nose, but must become subsonic again
if asymptotic conical pressure is to be reached downstream. While Traugott found the
method to fail upon approaching this range of angles from below, the present program
fails upon approaching from above.

Unfortunately, there are not available any extensive tabulations of the sonic~point
location on a sphere for various combinations of ¢y and M. In fact, it is that informa-
tion for the one-strip integral method that is needed here, for the purpose of avoiding the
critical condition when using this program. A more practical limit, which can be charted
profusely, is the sonic condition for the pointed cone, gc’son(')/,Moo). It was found that
this condition lies fairly close to the "smooth sphere sonic-point'' condition and will serve
as a guide in warning the program user of expected sensitivity and possible nonconver-
gence. Figure 21 is a chart of the pointed sonic cone condition; the calculations were
performed by using the algebraic equations which approximate conical flow by setting the
right-hand sides of equations (2) and (3) equal to zero (ref. 17).

Convex or Concave Spherical Caps

The same difficulties are to be expected for the spherical cap (convex to the stream)
when the corner is near the smooth sphere sonic point. For the concave spherical cap,
no extensive investigation was undertaken to determine the limits of applicability of the
present program. An obvious geometrical condition to be avoided for this shape is the
intersection of the surface normals within the shock layer — that is, since

3A reliable estimate for the number of halving-mode iterations Ny, required to
produce Ng decimal figures in 6(0)/Rp is

Npm sz/loglo 2 ~3.3Ng
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K = -df/ds = -1 for the concave spherical cap, the condition K& =1 might occur. It
is possible that this could happen for low values of M. and/or values of Ry / Ry,
approaching 1.0 (from above).

M, Too Small

As M. decreases, the shock wave moves farther away from the body and the
sonic point on the shock wave moves up, away from the axis. For a given body shape,
a value of M, > 1 will be reached where a considerable portion of the subsonic flow
region lies beyond the normal drawn from the sonic corner of the body. It would seem
that such solutions would be either nonexistent or meaningless in the one-strip integral
approximation, since the calculation ends when the sonic corner is reached, and hence a
part of the subsonic flow would be ignored. Such a situation is, of course, both physically
and mathematically objectionable.

What appears to happen in the one-strip approximation, at least in all cases studied
so far, is the following: the shock-wave sonic point always occurs ahead of the surface
normal drawn from the sonic corner of the body, which implies proper closure of the
subsonic region. But since the shock wave has less curvature near the axis as Mo
decreases, it must turn more rapidly as the sonic corner is approached to achieve the
sonic shock angle; the factor 8<p1u1v1>/83 in the denominator of dg/ds becomes
small near the corner, resulting in the rapid increase in magnitude of dB/ds. Ultimately
a value of M, is reached where 8<p1u1v1) 93 passes through zero at the corner, and
hence the shock has infinite curvature there.” The disk provides a good example of this
difficulty. In table I are given values of a(plulvl)*/aﬁ as M, decreases from hyper-
sonic values; it is clear that two-fold smooth (continuous curvature) shock-wave solutions
do not exist below My = 2.3.

TABLE I.- APPROACH TO SHOCK CURVATURE SINGULARITY FOR A DISK

M., 5(0)/Ry, B(plulvl)*/ 28
10.0 0.470 2.004

6.0 494 1.812

4.0 .541 1.464

3.0 .607 .9917

2.4 .703 .284

2.3 732 024
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CONCLUDING REMARKS

The present program has the capability for calculating good approximations to the
shock-wave shape and surface pressure distribution for blunt bodies with sonic corners.
Typical results for the disk, concave or convex spherical caps, and sphere-cones agree

well with experimental data.

The flow past a pointed cone was approximated by calculations for a sphere-cone
with small bluntness ratio. It was found that results were generally good for cone angles
larger than the detachment angle; but results were not satisfactory as the cone angle was
decreased to and below the detachment angle. The reason for this appears to be the
inability of the method to account for a vanishingly thin entropy layer.

For the blunted cone, inflection points occur in the shock wave when the sonic con-
dition for a pointed cone is reached. This condition can be reached, for example, by
decreasing the cone angle. Further decreases in cone angle cause the nose and afterbody
solutions to become nearly independent of each other.

It was found that reasonable estimates could be made for angle-of-attack pressure
distributions in the symmetry plane of a blunt cone. The windward and leeward distri-
butions were simulated by adding and subtracting the angle of attack from the cone angle,
respectively.

A critical condition for the method is evident in the application to sphere-cones and
spherical caps. It occurs when the combination of parameters (cone angle or surface
inclination angle at the sonic corner, Mach number, and specific heat ratio) is such that
the natural sonic-point location for the complete sphere lies at the sphere-cone junction
or the spherical cap corner. Depending on the bluntness ratio, extreme sensitivity and
nonconvergence is encountered somewhat before this condition is reached.

For a given body shape, there is a minimum Mach number below which no two-fold
smooth (continuous curvature) shock solutions exist. The accuracy of the solutions near
this minimum value is questionable, particularly near the sonic corner. For the disk,
the minimum Mach number was about 2.3 (in air).

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., February 13, 1968,
129-01-03-06-23.
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APPENDIX A

PROGRAM SYMBOLS

The FORTRAN symbols appearing in the input, headings, and output of this program

(appendix C) are given in the left-hand column, and their meanings defined in terms of

standard notation or the symbols defined in the section ""Symbols' are given in the right-

hand column.

Input:

LC

MM

GAMMA
AMINF

THETAC

These program symbols are as follows:

body shape trigger, 1, 2, 3, or 5 for disk, convex spherical cap, blunted
cone, or concave spherical cap, respectively

loop counter, number of cases (combinations of ¥y, Me, 6¢, and R)
for a given body shape (LC)

Y
Moo

6¢c, cone half-angle in degrees for blunt cone (LC = 3); dummy input
value for other shapes (other LC)

sonic~-point radius parameter, 1.0 for disk (LC = 1) and ro*/Rn for
other shapes (other LC)

Case heading (other than symbols defined for input):

DELO

DS

ETA

SI

5(0), initial standoff distance in appropriate length scale (as explained
in appendix B)

initial integration step size
n (see eq. (7a))
value of s at sphere-cone junction (LC = 3); dummy value for other

shapes

17
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NIS number of integration steps in final run
NIR number of integration runs to find correct &(0)
CD forebody pressure drag coefficient (referred to base area ﬂro*z for

all shapes)

Output (the output is printed across in a block of three rows for each integration step):

S S

BETAD B, degrees
THETAD 8, degrees
XO X(

RO ro

Uo ug

PO Po

RHOO Po

TO temperature ratio, Tg/Te
DELTA )

X1 X1

R1 rq

A2 \4

U1l uy

P1 P

18
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RHO1 Py

DS integration step size
DBDS dg/ds

DUODS dug/ds

POBAR Po /pma_x

SBAR s/s*

Main program (some of the more important FORTRAN symbols used in the main

program):

DSC starting step size for each integration run

LN overall print trigger, 1 for no print and 0 for print (switched to zero
when correct &(0) is found)

N step print trigger, 0 for no print and 1 for print (only print when stable
step is completed)

L body shape trigger, equal to LC but switched to 4 for rescaling when
1.C =3 (see description of body shape subroutine in appendix B)

LL trigger for double-valued curvature at sphere-cone junction, 1 for
sphere curvature and 2 for zero curvature

LLL step size trigger, 1 until step size is halved to achieve velocity bracket
and 2 thereafter (see program statement 54)

LLIL halving mode trigger, 1 until upper and lower bounds for &(0) are

found and 2 thereafter

Body shape subroutine:

THETA 6, radians

AK K, surface curvature

19



APPENDIX B
PROGRAM OPERATION

See main text section entitled "Limitations of Program' before operating this

program,

General Remarks

The FORTRAN IV program listed in appendix C was originally developed for the
IBM 7094 electronic data processing system, and subsequently it was modified for use in
the Control Data 6600 computer system. Other than using control cards which are
appropriate to an individual system, the changes necessary to operate the program on the
IBM 7094 system are as follows:

(1) Remove the two instructions in statement 1,

IF (EOF,5) 9999,1000
9999 STOP

(2) In statement 2, change the thirteenth instruction to:
IF (NIR.LT.31) GO TO 2000

The reason for change (2) is the shorter single-precision word length of the IBM system
(eight decimal digits). More than 27 halving iterations for &(0) will not change the
eight decimal digits carried in the calculations. About four runs are allotted for finding

upper and lower bounds for 6(0).

A large number of comment cards were included to highlight the various sections
of the program. A fourth-order Runge-Kutta integration scheme was built into the pro-
gram so that a "library' routine would be unnecessary. Also, a rule-of-thumb step size
variation scheme is used which is very simple yet adequate for these calculations. It
tests on the shock-angle derivative dB/ds and seeks a step size such that the "pre-
dicted' and "corrected'’ values for dB/ds at the interval midpoint are within a few per-
cent of each other. Numerical stability and accuracy are not a problem in these

calculations.

Initial estimates for DELO.- For each of the four shapes included, the initial esti-
mate for 6(0) is automatically computed, as follows:

20
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LC Shape DELO Source
1 | Disk 1.03/\lp1(0) = 1 Ref. 21
2 Convex sphere cap .667/[[)1(0) - 1] Ref. 21
3 | Sphere-cone 667R[[p1(0) - T | -------
5 Concave sphere cap | 1.03R W -------

Accuracy criterion.- The accuracy criterion for locating the sonic corner is listed

as 1074; that is, |ROST/R - 1] £10™% (see the fourth instruction from the end of state-
ment 60). This can be relaxed, if necessary, to achieve convergence closer to the
"critical condition" described in the main text in the section "Limitations of Program."

Modifications for other body shapes.- The program can be modified to include other
shapes in the body shape subroutine (BSR) by adding more statements, triggers, and, if
there are more than two segments to the shape, more junction locations SII, SII, etc.
Care must be taken to insure that an integration step coincides with each junction loca-

tion, and that the curvature of the segment upstream or downstream from the junction is
properly used. Some study of the logic for the sphere-cone shape (LC = 3) should help

in this respect; the crucial locations in the main program are the last "IF(. . .)" instruc-
tions in statements 30 and 52.

Some reasonable initial value for DELO must be given for any new body shapes, or
otherwise the initial DELO will be estimated for a sphere.

Input

The first four cards (ER, BLK, BCK, ERR) are always necessary to the program,
and they provide for specific error messages or debug information.

NNN is the debug trigger. If NNN = 0, debug information is printed out; a dummy
fixed-point number different from 0 is read in if no debug information is needed.

L.C is the body shape trigger; MM is the number of cases to be run for that value of
LC. For each case, one card is required, with values for GAMMA (y), AMINF (M),
THETAC (0¢), and R.

For LC =3 (the sphere-cone) THETAC is the cone half-angle in degrees; for
other L.C, a dummy value must be input.

R is the sonic corner location parameter. For LC =1 (disk), R =1. For the
three other shapes, R = ro*/Rn. Note that for the sphere-~cone, R is the reciprocal of

the bluntness ratio (Rn / Rb)-l.
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Case Heading and Output

See appendix A for a description of the symbols in the case heading and output. For
each integration step, a three-line block of 21 values is printed.

Length scale.- The appropriate length scale is as follows for the four body shapes:

Disk Ry =
Concave or convex sphere cap Rp=1
Sphere-cone Rp =

Sample Cases

At the end of the listing in appendix C, some sample input cards are listed. After
the four error- and debug-message cards, the NNN value is 1 (for no debug). Then all four
body shapes are run: one case each for the disk (LC = 1) and the concave spherical cap
(L.C = 5) and two cases each for the convex spherical cap and the sphere-cone. The total
central processing unit time for all six cases on the Control Data 6600 computer system
was about 18 seconds. The correct value of DELO (6(0) to the appropriate length scale
as already described) is listed for each case in order in the following table (15 decimal

figures carried in calculations):

Shape LC | MM | GAMMA | AMINF | THETAC R DELO
Circular disk 1 1 1.4 4.63 a1.0 1.0 bo.519443847
1.4 4.63 a1.0 0.25882 | €0.107979173
Spherical cap, convex to stream 2 2
1.4 4.63 a1.0 0.5 €0.156923693
1.4 4.63 60.0 4.0 b0.0921382953
Spherically blunted cone 3 2 -
1.4 4.63 60.0 50.0 0.0556326561
Spherical cap, concave to stream | 5 1 1.4 4.76 a1.0 0.25882 | €0.160711018

aDummy input.
b5(0)/Rp.
€5(0)/Ry.
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PROGRAM LISTING
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C

C

APPENDIX C

TRUNCATED BLUNT BODY
COMMON ER(12)+BLK(12)+BCK(12)+ERR(12)+sTHETA+THETAD+AKsRBETADALAMB

1+CON1 e CON2+sCONI ¢CONG s CONSsCONEICONT+CO0+CTL «NNNoUL V1 eP1 sGAMMA s RHO
21 4ST14Z1eH1 4Rl ¢X1 4CPHI +RHOO«PC+A0SQ4STO+PHI+DDDS «DBDS+DUODS«DRODS
3DXODSeTOACST+BETAWFAC«DENOM¢DENOM]L +DFDS+CDeR+PULIPB +POBAR s SMAX ¢
4SBARLNDELTAL +DELOWDELTAUINIRINISIL +PZ1PS

800
801
802
805
806
807
808
809
90
91
g2
93

FORMAT (25H
FORMAT (12H
FORMAT (21H
FORMAT (31H
FORMAT (31H
FORMAT (43H
FORMAT (32H
FORMAT (25H

DAVIS-DLD-A1054C~3~15-66)

JERRY SOUTH)

TRUNCATED BLUNT BODY//)

CIRCULAR DISK NORMAL TO STREAM//)

SPHERICAL CAP CONVEX TO STREAM//)
SPHERICALLY-BLUNTED CONE +CONE HALF-ANGLE =+El168//)
SPHERICAL CAP CONCAVE TO STREAM//)

ITERATION COUNT EXCEEDED/)

FORMAT (12A6)
FORMAT (1015)

FORMAT (5E1448)
FORMAT (1 X6HGAMMA=E 1684+ 2X6HAMINF=E16689¢2X5SHDELO=E16¢8¢2X3HDS=E168

1)

94 FORMAT(IX1A6/(BE1648))

95 FORMAT(1IX12A6//)

96 FORMAT(15H DELO TOO LARGE)

97 FORMAT(8X1HS14XSHBETADIOX6HTHETAD1Z2X2HX014X2HRO14X2HUO14X2HPO13X4H
1RHOO/7X2HTO14XSHDEL TA12X2HX114X2HR114X2HV1 14X2HU114X2HP1 13X4HRHOL/
27X2HDS14X4HDBDS 1 2X5HDUODS1 1 XSHPOBAR11 1 X4HSBAR/ /)

o8

FORMAT (/)

99 FORMAT(1X8E16¢8/1X8E16¢8/1X5E1648/)

100

FORMAT (//)

102 FORMAT(I1X4HETA=EL16e8+2X2HR=E16e¢8+2X3HSI=E16¢8+2X4HNIS=1S542X4HNIR=]
15+2X3HCD=E168//)

WRITE(6+800)

WRITE(6+801)

WRITE(6+802)

DEG=57295780

PI=3.1415927

9999
1000

PI2=P1/2e

READ(S5+90)ER«BLK«BCKERR
READ (5491 ) NNN

READ (5491 )LCeMM

IF(EOF +51)99994+1000

STOP

DO 71 MMM=1 MM
READ (5+92 )GAMMA AMINF s THETAC +R
COMPUTATION OF CONSTANTS AND STARTING PARAMETERS

ETA=495
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Sl=el1E+06
IF(LCeEQe3)S5S1I=(90«=-THETAC)/DEG
DSC=¢05

IF(LCeEQe3)DSC=SI1/10,
CON3=GAMMA-1 4

CON4=GAMMA+1 o

CON1 =4 ,/CON4

CON2=AMINF %%2
CONS=CON3/ (2 ¥GAMMA)
CON6=1 o/ (GAMMAX¥CONZ2)

CON7=1e¢/CON3

L=LC

DENSI=2¢% (CON2—1¢)/(2¢+CON3*CON2)
DELO=e¢667/DENS1
IF(LeEQe3)DELO=R*DELO
IF(LeEQelesORelsEQeS)IDELO=1e03*¥R/SQART(DENSTI)
DELTAL=DELO

NIR=0

LN=1

LLLL=1

INITIAL VALUES

2

2000

LL=1

Lt =1

N=0

DS=DSC

S=0e0

CALL BSR(L+LL+SIeS)

IF(LNeEQeOsANDeLsEQe1 IWRITE(6.805)
IF(LNeEQeOeANDLsEQe2)WRITE(64806)
IF(LNeEQeDeAND el CeEQe3IWRITE(6+807)THETAC
IF(LNeEQeQeANDsLeEQeSIWRITE (64808
IF(LNeEQeQIWRITE(64F3)GAMMA s AMINF ¢ DEL O+ DS
IF(LLNeEQeO)IWRITE (69 102)ETAWR«ST«NISINIRCD
IF(NIRSLTeS50)GO TO 2000
IF(LNeEQsOIWRITE(6+4809)
IF(LeEQe2)THETST=SST*DEG
IF(LNeEQeQIWRITE(6+9G)I)ER(1 ) +DELTALWDELO+DELTAUISSTROSTs THETST
IF(LNeEQsQ)STOP

LN=0

GO TO 2

N1S=0

NIR=NIR+1

IF(LNeEQeDIWRITE(64¢97)

U0=040

BETA=P12

25
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26
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BETAD=BETA*DEG
DELTA=DELO
RO=040
X0=0e0
F=0e¢0
200 CALL SHOCK(S+UQOBETAWDELTAIROXOsF)
DISC=-vl
IF(NNNeEQeOIWRITE (6194 )BLK (1) ALAMBsBsA Pl +RHOL1 +V1+DISCDELTAWBETA
1eUOWROXO+THETAsR14X1 sUl
IF(DISCeLTe0e0eOReRHO1eLEee00001)GO TO 20
AOST=SQRT(DISC)
TEST=ETA#A0ST
INITIAL DERIVATIVES
IF (INNN+EQ4O IWRITE (6494 )BLK (2)4AOST+TEST+CPHI +H1 +FAC+RHOQ PO LPULP
1B+ AOSQsTO
GO TO 24
20 WRITE(6+94)ER(1)+DISC+RHO!
GO TO 71
24 DENOM=DELTA*H1*PU1PB
IF(ABS(DENOM) e LEe 00001 )GO TO 26
DBDS=(PO—-P1~V1¥*H1)/DENOM
DENOM1 =DELTA*RHOO*V 1
IF (ABS(DENOM1)elLEe¢00001)GO TO 27
DUODS=~ (1 e +tAK¥DELTA ) * (PO—P1 )/DENOMI
DDDS=0.0
DRODS=1 0
DXODS=00
DFDS=0e0
CD=2¢% (PO-CON6)
HUO =0
IF(LNeEQeOIWRITE(6¢9F9)S+BETADsTHETAD + XOs RO+ UQ sPOsRHOO s TOWDELTAWX1 s
1R1+V12UI sP14RHO14DS+DBDSsDUODS +POBAR,SBAR
25 IF(NNNeEQeO)IWRITE (5494 )BLK (3)+DENOMsDBDS +sDENOM1 sDUODS +DDDS+DRODSD
1X0DS
GO TO 31
26 WRITE(6+94)ER(4)+DENOM
GO TO 71
27 WRITE(6+94)YER(5)+DENOMIDENOM]
GO TO 71
RUNGE-KUTTA INTEGRATION (FOURTH ORDER ROUTINE) WITH VARIABLE STEP SIZE
30 IF(LeEQe2eANDeRSeGE«1¢57071G0O TO 71
CALL BSR{(L+LLsSIaRS)
CALL SHOCK(RS+RUOWRBETAWRDELTAWRROWRXORF)
IF(LoeGT el s ANDePZIPBelLTee1)GO TO 530
IF(LNeEQeOeANDeNeEQe 1 IWRITE (6499 )RS +RBETAD«THETADIRXOsRROWRUO PO »
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IRHOO+ TO+RDELTA+X14R1+V14U1+P1,RHO1+DS.DBDS+DUODS +POBARSBAR

N=0
IF(SIN(RBETA)*%2¢l.E ¢ e 00001 ¢+ OR« ABS{COS(ALAMB) ) e LE e eQ0001 s ORFACL T
10e60e60ReABS(RHOO)eLE e +e00001 2+ ORABS (RRO)eLE««000C0O! e ORe ABS (DENOM) o LE »
2¢00001e0OR«sABS (DENOMI )el.Ee«0Q0001)GO TO 71

IF(LLeEQe2)GO TO 31

C CHECK ON LOCATION OF SPHERE-CONE JUNCTION

31

IF(S+DS+LESIYIGO TO 31

bs=s1-5

Al =DS*DUODS

B1=DS#DBDS

C1=DS*DDDS

D1=DS*DRODS

E1=DS*DX0ODS

F1=DS*DFDS
IF(NNNSEQeOIWRITE(6+494)BLK(4)4A1+81+C1aD1+E14F1
RS=S+DS5/2.

RUO=UO+Al /2

IF(RUOC«GT e e999*A0STIGO TO 54

RBETA=BETA+B1/2e

ROELTA=DELTA+Cl1/2.

RRO=RO+D1 /2.

RXO=XO+E1l /24

RF=F+F 1 /2

CALL BSR(LsLL+SIsRS)

CALL SHOCK(RS+RUORBETA+RDELTA+RRC+RXDRF)
IF(SIN(RBETA)%¥%2e¢L.Ee e 00001 ¢ OR¢ABS (COS(ALAMB ) ) eLE« 200001 eOReFACeLTe
10e0e0ORsABS (RHOO ) eLE e e 00001 s OReABS(RRO) ¢LE ¢ ¢ 00001 ¢ORes ABS (DENOM) o LE e
2000001 e ORJARS(DENOM]L } o LE» 00001 )G0O TO 71
A2=DS*DUODS

B2=DsS*DBDS

C2=DsS*DDDS

D2=DS*DRODS

E2=DS*DX0DS

F2=D5S*DFDS
IF(NNNEQeOIWRITE (6494 )BLK(5)4A2+B2+C2+D2:E2+.F2
RUO=UO+AZ/2.

IF(RUO«GT e +s399%¥A0STIGO TO 54

RBETA=BETA+B2/2

RDELTA=DELTA+C2/2.

RRO=RO+D2/2.

RXO=X0O+E2/2

RF=F+F2/2%

CALL BSR(LsLLeSI*RS)

CALL SHOCK(RS+RUQ«RBETAWRDELTAWRROWRXORF )
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IF(SIN(RBETA)I®%#2eLEee00001 ¢ORABS (COS(ALAMB ) ) eLEee00001l sOReFACeL T
1000¢0OReABS(RHOO )eLE s 00001 ¢ OReABS(RRO)eLE+»¢00001 ¢ OReABS (DENOM) o LE»

2¢00001e0RABS(DENOM1 )L Eese00001)GO TO 71
A3=DS*DUODS

B83=DS*DBDS
IF(ABS(B2)el.Te e l1E—05+0Rel.LLeGTe11GO TO 32

C INTEGRATION ACCURACY STEP-SIZE TEST

32

Cc TE

c TE
51

DSTEST=ABS ((B2-B3)/B2)

IF(DSTEST+LE«e051GO TO 32

DS=e5%DS

IF(DSeGTeelE~-05)GO TO 55
WRITE(6194)ER(S5)sDSsDSTEST 181 +B2+83+DELTAL +DELOIWDELTAU
WRITE(6+91 )INIRWNIS

GO TOo 71

C3=DS*DDDS

D3=DS*DRODS

E3=DS*DX0DS

F3=DS*DFDS

IF (NNNeEQsOIWRITE(6+94)BLK(6)4A3+B3+C3:D34E34F3
RS=5+DS

RUO=UO+A3

IF(RUOeGT e ¢« IFI99*A0STIGO TO 5S4

RBETA=BETA+83

RDELTA=DELTA+C3

RRO=RO+D3

RXO=X0+E3

RF=F+F3

CALL BSR(LeLL+SIRS)

CALL SHOCK(RS+RUORBETARDELTA+RRO+RX0O+RF)
IF(SIN(RBETA) %% 2eLEee00001 e ORcABS(COS(ALAMB ) ) el Eee00001 ¢ OReFACeL T
10e0e0OR«ABS (RHOO) e LE ¢ e 00001 ¢OR«¢ABS(RRO)eLE «e00001 «OR«ABS (DENOM) oL E W
2e¢00001 «0OR«sABS(DENOM1 )eLEs«Q0001)G0 TO 71
A4=DS*¥DUODS

B4=DpsS*DBDS

C4=DS*DDDS

D4=DS*DRODS

E4=DS*DXODS

Fa=DS*¥DFDS
IF(NNNesEQeOIWRITE(6+94)BLK(7)9A44B44C49D4+E4Fa
UOSUO+1 e/ 6e* (A1 42 ¥A2+2e*A3+A4)
ST FOR VELOCITY DECREASE

IF(ABS(UO)«LE«e00001)G0O TO 530

IF(UC)YS30+530.51
ST FOR VELOCITY BRACKET NEAR SONIC POINT

IF (ABS(UO-TEST )elLEee00001)G0O TO S3
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IF(UO-TEST)S2¢53¢53

52 IF(SeEQe00)DSC=DS
S=5+DS
HUO=UO
BETAZBETA+41 ¢ /66 # (Bl +26 #B2+2 4 ¥B3+B4)
DELTA=DELTA+]1e/6e%(C14+2eXC2424%C3+C4)
RO=RO+1 ¢ /6e¥ (D1 +2e%¥D2+2 ¢ *D34+D4q)
IF(ROeGTeReANDeLeGTel sANDeLNeEQel) GO TO 530
XO=X0+1 e /6 e (E1+2 e ¥E2+2 e #E34+E4 )
FoF+]1e/6e#(Fl+24#¥F 2426 %F3+F4)
N=1
NIS=NIS+1

INCREASE STEP SIZE IF INTEGRATION SMOOTH ENOUGH
IF(DSTEST«GTee005¢0ReABS(S~SI) el EeelE-05e0ReLLLeGTel)GO TO 55
DS=1+9%DS
GO TO 55

DELO TOO LARGE - HALVING MODE IF LOWER BOUND IS KNOWN
530 CELTAU=DELO
CELO=«5% (DELTAU+DELTAL)
IF (ABS (DELO-DELTAL)eLEe s 1E-05eANDelLLLIL ¢EQsel }GO TO 5300
SET LLLL TRIGGER - UPPER AND LOWER BOUNDS FOR DELO FOUND
LeLe =2
GO TO 2
SEARCH AGAIN FOR LOWER BOUND FOR DELO
5300 DELO=«5S*¥DELO
DELTAL=DELO
GO TO 2
53 IF(ABS(UQ-e999%A0ST)eLEe«e0O0001)GO TO 60
IF (U0~ e 999 ¥A0ST )I60+60+54
HALVE STEP SIZE TO ACHIEVE VELOCITY BRACKET
5S4 LS=DS/2e
UOo=HUO
LLtL =2
55 IF(SeEQe00)GO TO 200
RS=S
RUO=UO
RBETA=BETA
RDELTA=DELTA
RRO=RO
RX0=X0
RF=F
GO TO 30
VELOCITY WITHIN BRACKET - - PREPARE TO EXTRAPOLATE
60 S=5+DS
BETA=BETA+1 ¢ /6% (Bl +2+%B2+2 ¢« *B3+B4)

START HALVING MODE
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DELTA=DELTA+1e /6% (C14+2e%*¥C2+24,%C3+C4)

RO=RO+1 ¢ /6 e ¥ (D142 %*D2+2 ¢ ¥D3+D4 )

XO=XO0+1 e/ G e¥ (E1+2 e ¥E2+2 e ¥E3+E4Q )

F2F+1e/6e%¥(Fl+2e%F2+2+%¥F3+F4)

NIS=NIS+1

CALL BSR{(L +LLeSI+S)

CALL SHOCK(S+UQBETAWDELTAIRO¢XOsF)

IF(LeGT el e ANDePZ1PBelLTeel)}GO TO 530

IF(R*¥DUODS+L.Te«1 )50 TO 530
IF(LNeEQesOIWRITE(H499)SsRBETAD s THETAD « XOsRO e UOsPOJRHOO s TODELTA ¢« X1
19R1sVIsUL +P1 «RHO1+DS+sDBDS+sDUODS yPOBAR+SBAR
IF(SIN(RBETA)**#2e¢l Eee Q0001 s OReABS(COS(ALAMB ) ) el Ee e QD001 s OReFACLTo»
10006 ORGABRS (RHOQ ) e LE e 00CO1 s ORsABS(RRO) eLE e e 00001 e ORe ABS (DENOM) o LE o
2200001 40RABS(DENOM1 ) eL.Eee¢00001)GO TO 71

C EXTRAPOLATION TO SONIC POINT

SST=S+(AQST-UOC )/ (2*DUODS)

UOST=AOST

BETAST=BETA+DBDS* (55T-5)

DELST=DELTA+DDDS*(S5T-S)

ROST=RO+DRODS*¥ (SST-S)

XOST=X0+DXODS* (SST-9)

FST=F+DFDS*(SST-5)

DS=SST-S

NIS=NIS+1

CALL BSR(L+LL+SIeSST)

CALL SHOCK{(SST+UOST+BETAST«DELSTIROST«XOSTWFST)

IF (LNeEQWOIWRITE(6¢99)SSTIRBETAD« THETAD ¢ XOST«ROSTsUOST+POsRHOO+TO ¢
IDELSTaX1eR1eV1IsULIsP1eRHOL14DS+DBDS+DUCDS +RPOBARSBAR
IF(LNeEQeCIWRITE(6498)

IF(LNeEQeQ)IGO TO 601

IF(LeEQe1)YGO TO 600

C TEST FOR SONIC ROINT LOCATION

IF (ABS(ROST/R=1e)elLE««¢0001)GO TO 600
IF(ROSTeGT«RIGO TO 530

IF(ROSTelLTeReANDeLLLLEGe1)GO TO 602
IF(ROSTeLTeReANDsLLLL+EQe2)G0O TO 603

C CORRECT DELO FOUND — - SET LENGTH SCALE AND RERUN FOR PRINTING
600 LN=0

601

CD=4 4 ¥FST/ROSTH*¥2
IF(LeEQe3)GO TO 604
IF(LeEQel1 )DELO=DELO/SST
IF(LeEQe1)DSC=DSC/SST
SMAX=SST

GO TO 2

WRITE(64+100)
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GO TO 71
C DELO TOO SMALL - - SEARCH AGAIN FOR UPPER BOUND FOR DELO
602 DELTAL=DELO.
DEL.O=2+*DELO
GO TO 2
C DELO TOO SMALL -~ HALVING MODE
603 DELTAL=DELO
CELO=«5* (DELTAL+DELTAW)
GO TO 2
C RESCALING SPHERE CONE TO A UNIT BASE RADIUS
604 L=4
DELO=DELO/R
DSC=DSC/R
SI=S1/R
SMAX=SST/R
GO TO 2
70 WRITE(6+94)ERR (1) +DUODS
71 CONTINUE
GO TO 1
END

FUNCTION COT(A)
COT=COS(A)Y/SINC(A)
RETURN

END

FUNCTION TAN(A)
TAN=SIN(A)/COS(A)
RETURN

END

SUBROUTINE BSR(Ls+LL#SI+S)

COMMON ER(12)+BLK(12)+BCK(12)+ERR(12)+THETAJTHETAD+AK+RBETADALAMB
1+CON1 ¢« CON2+CON3+CON4 ¢ CONS+CONGE+CONT2CI0eCA1 sNNNsUL V1 +P1 +GAMMA ¢ RHO
214ST1+Z1aHI ¢R1 2 X1 +CPHI +RHOOQ +PO+A0SQ+STO +PHI +DDDS+DBDS +DUODS+DRODS »
30XODS+TO«AOST+BETA+FAC s DENOMDENOM] s DFDS+CD+R1PUIPB+ POBAR ¢ SMAX
4SBARWLNIDELTAL +DELOWDELTAUCNIRWNIS LFPZ1PB

GO TO(1+2+34445)sL

C Diex
1 THETA=15707953
AK =060
GO TO 9
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CONVEX SPHERICAL CAP PORTION — - LENGTH SCALE IS SPHERE RADIUS
2 THETA=15707963-S
AK=1 60
GO TO 9
SPHERE-CONE CHECK FOR JUNCTION
3 IF((SI=S)eGTee00001)GO TO 2
IF(ABS(S=S1)eLEesQ0001«ANDeLL+EQel1)GO TO 6
SPHERE-CONE BEYDOND JUNCTION
AK=0e0
GO TO 9
RESCALED SPHERE~CONE CHECK FOR JUNCTION
4 IF((SI~S5)eGTee00001)GO TO 7
IF (ABS(S—=S1)eLEee00001«ANDeLL +EQel1)GO TO 8
RESCALED SPHERE—-CONE BEYOND JUNCTIiON
AK=0e0
GO TO 9
CONCAVE SPHERICAL CAP
5 THETA=15707963+S
AK==140
GO TO 9
SPHERE~CONE JUNCTION REACHED
6 LL=2

GO TO 2
RESCALED SPHERE-CONE ON SPHERICAL PORTION ~ LENGTH SCALE IS CONE BASE RADIUS

7 THETA=145707963-R%*5S
AK =R
GO TO 9
RESCALED SPHERE-CONE JUNCTION REACHED
8 LiL=2
GO TO 7
9 THETAD=THETA*¥57 295780
RETURN
END

SUBROUTINE SHOCK(RSsRUORBETA+RDELTARROWRXOWRF)

COMMON ER(12)+BLK(12)«BCK{12)+ERR(12)+THETAW+THETAD+AK+RBETAD+ALAMB
1 «CON1aCON22sCON3+sCON4 s CONDSsCONE+CONT+1C0+CT1 sNNN2UL o V1 P11 sGAMMA 4RHO
21 ¢ST1eZ1 eH14R1 4 X1 4CPHI 4RHOOIPO+AOSGQySTOPHI +DDDS +DBDS+DUODS +DRODS s
3DXODS+TOWAOST«BETA+FAC «DENOMLDENOML +DFDS+CD R +PUIPB+POBAR Y SMAX
4SBARJLN«DELTAL +DELODELTAUSNIR «NISILPZ1PB

THETAD=THETAX*¥57.295780

RBETAD=RBETA*57 295780

CI0=1] « +AK*RDELTA

CO1=2++AK*RDELTA
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C SHOCK WAVE FUNCTIONS
ALAMB=RBETA-THETA
B=CONZ2*SIN(RBETA)**2
A=eS*¥CON1 % (B—1e¢)7CON2
IF(NNNEQeO)IWRITE(6+94)BLK(B) e RSIRUOIRBETA ¢RDELTAIRRORXO'RBETAD T
IHETA+AK+sC0+¢C21 +ALAMB 1B+ A
IF(SIN(RBETA)®*%¥2¢LE¢e 00001 e OReABS(COS(ALAMB))eLE««00001)GO TO 1
Ul=(1e=~A)X¥COS(THETA)+A¥COT(RBETA)I*SIN(THETA)
Viz=(1e~A)¥SIN(THETA)+A#COT (RBETA))*COS(THETA)
P1=(2«%GAMMA*B~CON3)/ (GAMMA#CON4%¥CON2 )
RHO1=CON4*B/ (2« +CON3%*B)
C ISENTROPE CONSTANT FOR NORMAL SHOCK
IF(ABS(RS)eEQeDeO)ICPHI=P1/RHO1 ¥¥GAMMA
ST1=RHO1%*Ul
Z1=V]*#ST1
H1=RHO1%¥V1
R1=RRO+RDELTA¥COS(THETA)
X1 =RXO-RDELTA*SIN(THETA)
IF(NNNeEGeOIWRITE(6+94)BLK(9) 93Ul +V1+P1+RHO1+4ST1 eZ1 +H1 oR1 4X1
FAC=(CONS* (] «—RUO*#2)+CONG6)/CPHI
IF(FACeLTe0e0)GO TO 2
C ISENTROPIC SURFACE PRESSURE AND DENSITY
RHOO=FAC**CON7
PO=CPHI ¥*RHOO¥X*GAMMA
IF(RS«EQe Qe 0)PMAX=PO
POBAR=PO/PMAX
IF(LNeEQel1)SMAX=1e0
SBAR=RS/SMAX
IF (ABS (RHOO) «LEe«00001)GO TO 3
AOSQ=GAMMA ¥PO/RHOO
TO=CONZ2#*#A0SQ
STO=RHOO*¥RUO
C SHOCK PARTIAL DERIVS WRT BETA
PU1PB=—CONI ¥*COS(RBETA)I*¥SIN(ALAMB)~-AX*SIN(THETA)/SIN(RBETA)**2
PV1IPB=CON]*COS(RBETA)Y*COS(ALAMB)-AX¥COS(THETA)/SIN(RBETA)Y*#*2
PR1IPB=CON1*SIN(RBETA)Y*COS(RBETA)
PROIPB=RHO1 ¥%¥2%4 ¢« *COT (RBETA )/ (CON4*¥B)
PZ1PB=H1*¥PU1PB+ST1¥PVIPB+U1 *Vv1*¥PRO1PB
IF(l_eGTel eANDePZIPBel.Teel)GO TO 7
DENOMS5=RHQO1 *CPH !
IF(ABS(RHOL ) eLLEes00001e0ReABS(P1)elLEee00001 eORABS(DENCOMS) oLE e « 000
101)GO 7O 8
DISC1=P1/DENOMS
IF(DISC1eLTe0e0)GO TO 9
TAUY=DISC1#¥%¥CON7
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TAUO=RHOO
PTAUPB=TAUL /CON3¥ (PP1PB/P1-PRO1PB/RHO1)

PUITIB=UI*PTAUPB+TAULI ¥PULPB
IF(RS«EQeQ«0)GO TO 7
IF(ABS(RRO)sLEe1eE~13)G0 TO 4

C DERIVATIVES WRT S

94

DDDS=C90*TAN (ALLAMB)

PHI=RDELTA*¥SIN(THETA)/RRO
IF(NNNeEQeO)IWRITE (6194 )BLK(10) ¢FACIRHOO+PO+AOSQeTO+STOWPHI
C92=R1/RRO

DENOM=RDELTA*CI2*PZ1PB
IF(NNNeEQeOIWRITE(6+94)BLK(11)+PUIPB+PVIPB+PP1PB.PROLIPBPZ1PB.DDDS
1+ C92+DENOM

IF (ABS(DENOM) oL Ee+00001)GO TO S

FAC1=COO0* (TAN(ALAMB)-PHI)*Z1-C91%C92%V]1 *¥H] +AK*RDEL TA*RUOXSTO+(C90+
1C92)*(PO-P1)

DBDS=FAC1 /DENOM

DENOM1 =RDEL TA*TAUO¥ (AOSQ-RUO*%2)
IF(NNNsEQsOIWRITE (6494 )BLK(12)+FAC1 +DBDS+DENOM1 +RHO1 +P1 sRHOODISCL
1+ TAUL « TAUOWPTAUPB,.PULITLB

DRODS=SIN(THETA)

DXODS=COS(THETA)

DFDS=(PO-CON3S)*RRO*SIN(THETA)

IF (ABS (DENOM1 ) eLEe«00001)GO TO 7

FAC2=C92% (RDELTA*PUITIB*DBDS+CI1*#TAUL*V1 )+ (RUO*TAUO-UL*TAU1 ) *DDDS+
IPHI* (RUO*TAUO+CI0*U1*TAUL)

DUODS=-A0SQA*¥FAC2/ABS (DENOM1 )

GO TO 7

WRITE(6+94)ER(6)«RBETAALAMB

GO TO 7

FORMAT (1X1A6/(8E1648))

WRITE(6+94)ER(7)«FAC

GO TO 7

WRITE(6+94)ER(8)«FAC+RHOO+PO

GO TO 7

WRITE(6+94)ER(9)+FAC+RHOOsPO+AOSQsTO«STOWRRO

GO TO 7

WRITE(6994)ER(10)+DENOMPZ1IPB+DELTAL +DELO+DELTAU
WRITE(6+F1)INIRWNIS

FORMAT(1015)

GO T0 7

WRITE(64+494)1BCK(6)+RHO1+,P1+DENOMS

GO TO0 7

WRITE(6+94)BCK(7)+DISCH
IF(NNN.EQesOIWRITE(6+94)BCK (1) +FAC2+DUODS +DRODSsDXODS+DFDSCO



RETURN

END

ER1

BLK1
BCK1
ERR1

ER2

BLK2
BCK2
ERR2

APPENDIX C

Input Cards for Sample Cases Described in Appendix B

ER3

BLK3
BCK3
ERR3

ER4 ERS

BLK4 BLKS
BCK4 BCKS
ERR4 ERRS

1

1 1
14000000+01
2 2
14000000401
14000000401
3 2
14000000+01
14000000401
5 1
14000000+01

46300000+01

46300000401
46300000+01

46300000401
46300000+01

47600000+01

ER6 ER7

BLKe BLK?7
BCK& BCK7Y
ERR6 ERR7

10000000+01

10000000+01
10000000+01

60000000+02
60000000+02

10000000+0Q1

ER8

8LK8
BCK8
ERRS8

ER9

BLK9
BCKY
ERR9

ER10 ER11
BLK10 BLK11
BCK10 BCKl1
ERR10 ERRI11

10000000+01

25882000+00
50000000+00

40000000+01
50000000+02

25882000+00

ER12

BLK12
BCK12
ERR12
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Figure 1.- Schematic of geometry and coordinates.
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Figure 2.- Pressure distributions for a disk and two spherical

caps. v = 14; M, = 4.63.
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Figure 3.- Pressure distribution for a spherical cap concave to the stream. y = 1.4, Mo = 4.76.
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{a) Shock-wave shape.

Figure 4.- 600 sphere-cone. y = 1.4; Rn/Rb = 0.25.

41



42

max

Pma X

O Exp. (UPWT)
Calc.

s/s*

{b) Pressure distribution.

Figure 4.- Concluded.
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Figure 5.- Shock-wave shape for a 60° pointed cone. y = 14; Rp/Rp = 0.02
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Figure 6.- Pressure distribution for a 600 pointed cone. y = L.4; Rn/Rb = 0.02.
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Figure 7.- Forebody pressure drag coefficient dependence on cone angle for a pointed cone.
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Figure 7.- Continued.
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Figure 7.- Continued.
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Figure 8.- Drag coefficient dependence on bluntness ratio for a 60° sphere-cone. y = L.4.
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Figure 9.- Bluntness ratio effect on pressure distribution for a sphere-cone. y = 1.4; M = 10; 6¢ = 600,
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Figure 10.- Bluntness ratio effect on shock-wave standoff distance. y = 1.4, 8¢ = 60°.
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Figure 11.- Bluntness ratio effect on stagnation-point velocity gradient for a sphere-cone. y = L.4; 8¢ = 60°.
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Figure 12.- Effect of y on shock-wave shape for a sphere-cone. Me = 10; 8¢ = 609 Rn/Rb =0.25.
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Figure 13.- Effect of y on pressure distribution for a sphere-cone. Me = 10; B¢ = 600; Rn/Rb = 0.25.
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Figure 14.- Effect of 8; on shock-wave shape for a sphere-cone. y = 1.4 Me = 10; Rn/Rb = 0.25.
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Figure 15.- Effect of 8. on pressure distribution for a sphere-cone. y = L4; My = 10; Rn/Rb = 0.25.
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Figure 16.- Effect of 6; on shock-wave standoff distance for a sphere-cone. y = L4 M, = 10; Rn/Rb = 0.25.
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Figure 17.- Simulated pressure distributions in plane of symmetry for 60° sphere-cone at 50 angfe of attack. Uncorrected s-coordinates; v = 1.4; Mo = 4.63.
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Figure 18.- Simulated pressure distribution in piane of symmetry for 60° sphere-cone at 50 and 10° angle of attack. y = 1.4; M = 4.63; Rn/Rb = 0.25. Calculated results

obtained for windward and leeward sides by respectively adding or subtracting angle of attack from nominal (60°), Then s-coordinates are shifted and stretched to correct
the locations of stagnation and sonic points (see text).
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Figure 19.- Simulated pressure distribution in plane of symmetry for 600 sphere-cone at 5° and 100 angle of attack. y = L4; Ms = 2.96; Rn/Rp = 0.25. Calculated results

obtained for windward and leeward sides by respectively adding or subtracting angle of attack from nominal (60°). Then s-coordinates are shifted and stretched to correct
the locations of stagnation and sonic points (see text).
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Figure 20.- Dependence of sonic singularity location on shock-wave standoff distance. y = 1.4 M = 10; 8¢ = 520.
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